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Crystal structures and freezing of dipolar fluids
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We investigate the crystal structure of classical systems of spherical particles with an embedded point dipole
at T50. The ferroelectric ground state energy is calculated using generalizations of the Ewald summation
technique. Due to the reduced symmetry compared to the nonpolar case the crystals are never strictly cubic.
For the Stockmayer~i.e., Lennard-Jones plus dipolar! interaction three phases are found upon increasing the
dipole moment: hexagonal, body-centered orthorhombic, and body-centered tetragonal. An even richer phase
diagram arises for dipolar soft spheres with a purely repulsive inverse power law potential;r 2n. A crossover
between qualitatively different sequences of phases occurs near the exponentn512. The results are applicable
to electro- and magnetorheological fluids. In addition to the exact ground state analysis we study freezing of
the Stockmayer fluid by density-functional theory.

DOI: 10.1103/PhysRevE.63.021203 PACS number~s!: 61.20.Gy, 61.50.Ah, 83.80.Gv, 64.70.Kb
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I. INTRODUCTION

The last years have seen a revival of interest in sim
dipolar fluids, which consist of spherical particles with em
bedded point dipoles, triggered by two unexpected obse
tions: At high interaction strengths and high densities a
uid phase with long-range ferroelectric orientational ord
but without any positional order occurs@1#; at low densities
the particles form a gas of chains behaving like living po
mers @2#. The latter effect was suggested as an explana
for the apparent absence of gas-liquid condensation in d
lar hard spheres@3#, but this subject is still under discussio
@4#. Both phenomena have first been detected in comp
simulations @5–9#, followed by theoretical work@10–14#.
This discussion applies to electric and magnetic dipoles
complete analogy; in the following we will use the electr
language.

Knowledge about the solid phase of these systems is
essary in order to know under which circumstances form
tion of the ferroelectric liquid is preempted by freezing. Th
question has been tackled theoretically within two differe
versions of density-functional theory. Groh and Dietrich@15#
found a stable ferroelectric liquid for the Stockmayer~i.e.,
dipolar Lennard-Jones! model if the dipole moment is high
enough. Klapp and co-workers, however, found within th
approach that the ferroelectric liquid is always metastable
comparison with the solid both for Stockmayer and dipo
hard sphere fluids@16,17#. But in a recent study they dem
onstrated that their result depends sensitively on the app
approximations@18#. The only solid structures considered
these papers@15–18# are face-centered cubic~fcc!, which is
the known crystal structure in the nonpolar limit, and bod
centered tetragonal~bct! with the special axis ratioc/a
5A2/3, which had been determined before as the gro
state of dipolar hard spheres@19# and has also been observe
in simulations@20# and in experiments@21,22# with elec-
trorheological fluids, i.e., suspensions of polarizable col
dal particles.

In a recent simulation Gao and Zeng@23# confirmed the
occurrence of a stable ferroelectric liquid phase for
1063-651X/2001/63~2!/021203~11!/$15.00 63 0212
le
-
a-
-
r

-
n
o-

er

in

c-
-

t

r
in
r

ed

-

d

-

e

Stockmayer model and, in addition, determined for the fi
time portions of the phase boundaries between isotropic
ferroelectric liquid and between ferroelectric liquid an
solid. Although these results support the basic conclusio
Ref. @15# they found that the stable solid phase of the Sto
mayer model is body-centered orthorhombic~bco! and addi-
tionally observed a metastable distorted hexagonal struct
possibilities that have not been taken into account in
theoretical work@15–18# so far. Both bco and bct as well a
an fcc crystal with helically varying polarization directio
have been reported before in simulations of dipolar h
spheres@24#, but the thermodynamically stable state cou
not be determined. Certain structures may be suppresse
simulations due to the periodic boundary conditions if t
cell shape is not flexible enough.

A simple heuristic argument why a cubic structure is n
expected runs as follows. All these crystals are ferroelec
and hence have less symmetry than in the nonpolar case
point symmetries can only be reflections at planes that c
tain the polarization axis and rotations around this ax
Therefore if, e.g., in a cubic crystal a polarization in@100#
direction is switched on, the additional introduction of a co
traction along this direction does not further reduce the
maining symmetry. Hence generically the crystal will ha
an axis ratio different from unity, i.e., it will be tetragona
For polarization along the initial@110# and@111# directions
the same reasoning leads to orthorhombic and trigonal c
tals. Thus a ferroelectric solid can never be strictly cubic,
contrast to the assumptions made in the density-functio
work described above and in similar work on the Heisenb
fluid @25#.

Thus up to now it is quite unclear which crystal stru
ture~s! actually are stable in these widely used dipolar mo
systems. As a first step to elucidate this region of their ph
diagram in the present work we determine the ground s
structure as a function of density, dipole strength, and s
ness of the isotropic interaction potential. Since in princip
an infinite number of crystal structures exists, characteri
by an increasing number of parameters with increasing n
©2001 The American Physical Society03-1
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B. GROH AND S. DIETRICH PHYSICAL REVIEW E63 021203
ber of particles in the basis, an exhaustive search for
ground state is not possible. However, we include a ra
large class of candidate structures, comprising among ot
all reasonable simple Bravais lattices. A relatively comp
phase behavior is found atT50. There is reason to expec
that the ground state results remain qualitatively valid at
too high temperatures and thus provide a valuable star
point for a more complete analysis of the full phase diagra

In a recent work@26# ground state energies and orderi
temperatures for ferroelectric and antiferroelectric arran
ments of Ising dipoles on several lattices have been de
mined, but no attempt has been made to optimize the la
structure. In this study also the presence of isotropic inte
tions was not taken into account.

In our analysis we always assume a spatially homo
neous polarization throughout the sample. In real ferroe
tric materials domains will form due to the long range natu
of the dipolar interaction@27#. The domain structure in the
liquid ferroelectric phase for a cubic sample shape has b
analyzed in detail in Ref.@28#. This more complicated situ
ation is avoided in two cases:~i! a needle-shaped samp
~infinite aspect ratio!, implying a vanishing depolarization
factor; ~ii ! cancelling of the induced surface charges by f
charges which are present in a conducting surrounding
dium or as impurities in the material itself.

After having reached a basically complete overview of
thermodynamically stableground states in such systems
which is interesting in its own right, in a second step
using density-functional theory we return to the issue
which solid phase the ferroelectric liquid phase of the Sto
mayer fluid forms uponfreezing. This closes the aforemen
tioned gap between the analysis of the solid phases as
sidered so far in the theoretical analyses@15–18# and the
observation of those types of solid structures as found
simulations @23#. It consolidates the theoretical predictio
@15# that the Stockmayer fluid can exhibit a thermodynam
cally stable ferroelectric liquid phase, in accordance with
simulation results.

II. MODELS AND METHODS

We study systems of spherical dipolar particles intera
ing via the dipolar potential

wdip~r !5
2m2r 213~m•r !2

r 5
, ~1!

wherer is the interparticle vector andm the dipole moment,
which is assumed to have the same orientation for all p
ticles. In addition there is an isotropic interactionwiso which
is taken as either the purely repulsive soft sphere~SS! poten-
tial

wSS~r !54eS s

r D n

~2!

or the Lennard-Jones~LJ! potential
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wLJ~r !54eF S s

r D 12

2S s

r D 6G . ~3!

The parameterse ands define the energy and length scale
respectively. The ground state properties only depend on
reduced dipole momentm* 5@m2/(s3e)#1/2 and the reduced
particle densityr* 5s3N/V of N particles in the volumeV.
Since in the SS case only the combinationesn enters the
potential, the only independent thermodynamic paramete
x5m* 2/r* n/321. In the LJ case the ground state energy p
particleU has the formU5eÊ(r* ,m* ) whereas for the SS
case one hasU5er* n/3Ē(m* 2/r* n/321) whereÊ andĒ are
dimensionless scaling functions which contain all the str
ture dependence. For soft spheres the optimum structure
mains the same as long asx is kept constant because th
prefactorr* n/3 is the same for all structures belonging to
given reduced densityr* . Furthermore one can show tha
also phase coexistence densitiesr i* determined for one value
of m* can be scaled to another dipole momentm* 8 accord-
ing to r* i85(m* /m* 8)6/(n23)r i* , because](r* U)/]r*
5er* n/3E1(x) with another scaling functionE1. Hence for
the SS model without loss of generality we setm* 51.

Explicitly the ground state energy per particle is

U5Udip1Uiso5
1

2 (
R,t

8 @wdip~R1t!1wiso~R1t!#,

~4!

whereR runs over theNl lattice vectors of a Bravais lattice
andt over theM positions of the basis particles within on
unit cell so thatN5NlM ; the prime on the summation sig
indicates that the term withR1t50 must be omitted. Here
we implicitly have replaced a double sum over the latt
sites by a single sum, assuming that the average energy
particle is equal to the energy of the particle at the origin
is a nontrivial issue whether this assumption is justified
the long-ranged dipolar potential. In the Appendix we sh
that it is correct for a spatially homogeneous configuration
an ellipsoidal sample shape, but not, e.g., for a parallele
ped.@But we recall that only under the conditions mention
in the last but one paragraph of the Introduction the grou
state has spatially homogeneous orientational order as
sumed in Eq.~4!.# Straightforward numerical calculation o
these lattice sums is hampered by their slow converge
Therefore generalizations of the Ewald technique are e
ployed to transform the sums into a more rapidly converg
form. The basic idea for evaluating adroitly a general s
(Rf (R) is to write f (R)5h(R)1g(R) whereh(R) decays
rapidly in real space and the Fourier transformg̃(k)
5*d3r e2 ik•rg(r ) decays rapidly in reciprocal space@29#.
The sum ofg is then evaluated in reciprocal space using
Poisson sum formula. For the inverse power sums w
f (R)5R2n one uses h(R)5G(n/2,n2R2)/@RnG(n/2)#,
whereG(a,x) is the incomplete Gamma function and obtai
for a Bravais lattice@30,29#
3-2
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(
RÞ0

1

Rn
5

1

G~n/2! F (
RÞ0

1

Rn
G~n/2,n2R2!

1
p3/2

Vc
(
kÞ0

S k

2D n23

GS 32n

2
,

k2

4n2D
2

2

n
nn1

2

n23

p3/2

Vc
nn23G . ~5!

Herek runs over the reciprocal lattice,Vc is the volume of
the unit cell and the last two contributions take into acco
the omissions of the termsR50 andk50. The parametern
can be chosen arbitrarily and the independence ofn of the
total sum provides a convenient check of the algorithm.
practicen is chosen such that both sums converge appr
mately with the same rate. Typically a few hundred latt
vectors in real and reciprocal space are sufficient to ob
machine precision (10216). The straightforward generaliza
tion to M particles in the basis leads to

USS
(n)5

2esn

G~n/2! F(R,t
8

G„n/2,n2~R1t!2
…

uR1tun

1
p3/2

Vc
(
kÞ0

(
t

cos~k•t!S k

2D n23

GS 32n

2
,

k2

4n2D
2

2

n
nn1N

2

n23

p3/2

Vc
nn23G . ~6!

Clearly for the LJ caseUiso5USS
(12)2USS

(6) .
An analogous expression for the dipolar lattice sum c

be obtained from the well-known result for the potential o
lattice of point charges@31#

Udip5
m2

2 F (
RÞ0

Fn~R!1
4p

Vc
(
kÞ0

kz
2

k2
expS 2

k2

4n2D 2
4n3

3Ap
G

~7!

with

Fn~R!5
2n

ApR4
~R223Rz

222n2R2Rz
2!e2n2R2

1
R223Rz

2

R5
erfc~nR!. ~8!

Due to the slow decay ofwdip the dipolar sum is actually
only conditionally convergent, i.e., the result is shape dep
dent. In the Appendix we present the derivation of Eq. 7 a
show that it corresponds to the case of a needle-sha
sample which is of interest here. The corresponding ge
alization to lattices with a basis reads
02120
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Udip5
m2

2 F(
R,t

8 Fn~R1t!1
4p

Vc
(
kÞ0

(
t

cos~k•t!
kz

2

k2

3expS 2
k2

4n2D 2
4n3

3Ap
G . ~9!

If the dipoles are not oriented along thez axis of the
lattice but have a general orientationm̂ the dipole sum has
the form( i j m̂iTi j m̂j with a symmetrical matrixTi j @see Eq.
~1!#. The optimum direction is then necessarily along one
the eigenvectors ofT which coincide with high symmetry
lattice directions. Thus it suffices to consider only one or t
possible orientations for each lattice.

The following crystal structures, displayed in Figs. 1 a
2, were included in the search for the minimum of the ene
~except for trigonal lattices the polarization is always alo
the c axis!:

~1! body-centered orthorhombic~bco! with axis lengths
a, b, c; reduces to bct fora5b, to fcc polarized along
@110# for b/a5c/a51/A2 ~see Fig. 1!, and to fcc polarized
along @001# for b/a51, c/a5A2;

~2! face-centered orthorhombic~fco!—note that for the
tetragonal case (b5a) face-centered and body-centered la
tices are equivalent;

~3! trigonal ~trig!: three equal axes with angleg between
any pair of them, polarized along@111#; reduces to various
cubic lattices polarized along@111# for special values ofg;

~4! hexagonal with axis lengthsa, c and a second basi
particle at t5a/2(1,1/A3,c/a) polarized along thec axis
~hexc!; corresponds to hexagonal close packed~hcp! for
c/a5A8/3;

~5! an orthorhombic lattice with four basis particles
t050, t15(a/6,b/2,c/2), t25(a/2,0,c/2), and t3
5(2a/3,b/2,0) which can be viewed as a distorted hcp l
tice with polarization in theab-plane~hexab!; this structure
was observed in Ref.@23#.

These possibilities have been chosen for the follow
reasons. The structures bco, hexc, and hexab are gene
by slight distortions of the close packed fcc and hcp lattic
which represent the ground state form50. The structures
fco and trig are included, because they approach reason
low density configurations in certain limits, which have be
observed in electrorheological fluids@22#. For g→2p/3 trig
degenerates into a hexagonal array of dipolar chains, and
c,b!a fco develops into a collection of parallel sheets. T
only remaining Bravais lattices, monoclinic and triclinic, a
improbable and also difficult to handle because of the lar
number of free parameters. We tested a monoclinic varia
of bco and always found that the energy is minimized fo
right angle between the axes. Concerning more complex
tices it is difficult to define a reasonable parameter sp
without a physically motivated structure to start from.

III. RESULTS

A. Stockmayer model atTÄ0

If one starts from the fcc structure of the nonpolar
system and introduces a dipole moment, all orientations
3-3
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FIG. 1. ~Color! Geometries of
the first four lattice structures con
sidered in the search for the en
ergy minimum. For bco the situa
tion at the fcc–bco transition is
shown: when a small dipole mo
ment is introduced in a nonpola
fcc crystal, polarization along
@110# is preferred and the crysta
contracts in this direction. Thick
and thin lines mark the conven
tional unit cells of fcc and bco, re-
spectively. Red particles lie on th
face centers for fcc and fco and a
half height (z5c/2) for hexc.
u
tr

rig
ica

-
ly

n of
the polarization have the same energy, as long as the c
symmetry is preserved. However, as discussed in the In
duction, the crystal actually distorts towards bco, bct, or t
depending on the direction of the polarization. The numer
02120
bic
o-
,
l

findings indicate that the@110# direction is selected, corre
sponding to a bco distortion as shown in Fig. 1. Intuitive
this can be understood as a preference for the formatio
chains along the polarization direction:@110# points towards
al
st-
It
al

n
e

e-
FIG. 2. ~Color! The ‘‘hexab’’ crystal structure
which arises from a distortion of a hexagon
close packed lattice polarized in a neare
neighbor direction within the hexagonal plane.
is an orthorhombic structure with three addition
basis particles shown in red (t1), green (t2), and
blue (t3) with coordinates as given in the mai
text. Four orthorhombic unit cells are shown. Th
thin lines mark the hexagonal unit cell that is r
covered for the special axis ratioc/a51/A3.
3-4



t
t

g
e
uc

um

re

e

ith
t

th
.
e

lu

m
a

on
e
ly
h
lo
s

th
si

ll
si-

p

. If

ing

olid

own
on

on

.

ity-

a

s

-

th

del.

icle
s a
the

to

CRYSTAL STRUCTURES AND FREEZING OF DIPOLAR FLUIDS PHYSICAL REVIEW E63 021203
the nearest neighbors so that the particle distance along
chains is smallest in this case. Indeed, upon increasing
dipole moment the length of thec axis decreases, reflectin
the strong attractive interactions along the chains. Figur
displays the dependence of the bco axis ratios on the red
dipole momentm* . The result of Gao and Zeng@23# for
r* 51.24, m* 52.5, andT* 5kBT/e50.7 denoted by the
diamonds lies very close to theT50 result. Obviously the
ground state gives a good approximation to the equilibri
state at least up to half the triple temperatureTtr* .1.3 @23#.
The same authors also report a metastable hexab structu
m* 52.5, T* 50.8, andr* 51.146 with the axis ratiosc/a
50.497 andb/a50.953. The corresponding values in th
ideal hcp lattice arec/a50.577 andb/a50.942, respec-
tively. At T50 the hexab crystal is only metastable too, w
c/a50.510 andb/a50.961. With increasing dipole momen
the two bco axis lengthsb and a perpendicular tom ap-
proach each other until at a critical valuemc* a continuous
transition to bct takes place~Fig. 3!. After a cusp atmc* in
the bct phasec/a decreases again and is much lower than
‘‘ideal’’ value A2/350.816 found for dipolar hard spheres

The true ground state of the nonpolar LJ model, howev
is hcp which has an energy very slightly below the fcc va
~by 0.01–0.02% depending on density!. This difference is
only due to second nearest neighbors because the nu
and distances of the 12 nearest neighbors is equal in fcc
hcp. The dipolar energy of the hcp lattice with polarizati
along thec axis@20# is lower than with polarization along th
a axis @19#. Therefore for small dipole moments a slight
contracted hcp lattice~hexc! is preferred over bco, althoug
the energy differences are always very small, e.g., be
0.16% for r* 51.24. At larger dipole moments bco take
over as the stable phase. Because of the smallness of
differences entropy effects at finite temperature may ea

FIG. 3. Axis ratios of the bco phase of a Stockmayer solid
T50 andr* 51.24 as a function of the dipole moment. Form*
50 one hasc/a5b/a51/A2 corresponding to fcc. The diamond
denote simulation results of Gao and Zeng@23# for r*
51.24, m* 52.5, andT* 50.7. At mc* .4.25 a continuous transi
tion to bct takes place. Note that form* ,1.95 the hexc structure is
slightly more stable than bco, while form* .2.55 gas-solid phase
separation occurs. Thus for this density bco is stable within
indicated window and metastable outside.
02120
he
he

3
ed

at

e

r,
e

ber
nd

w

ese
ly

tip the balance towards one or the other phase. The fuT
50 phase diagram is shown in Fig. 4. The hexc-bco tran
tion is first order but exhibits only a tiny density jum
Dr* .531023. The dashed linermin* (m* ) marks the abso-
lute minimum of the energy per particle over all densities
a system is prepared with a density belowrmin* it spontane-
ously shrinks to this minimum and leaves a correspond
portion of empty space. Thus the regionr* ,rmin* is a two-
phase coexistence region between the lowest energy s
and an infinitely diluted gas. ForT.0 it connects to gas-
solid coexistence while the liquid phase~s! appears only at
higher temperature above a triple point. Thatrmin* corre-
sponds to a phase coexistence density can also be sh
more formally by performing a double tangent constructi
on the ~free! energy densityu(r)5rU(r). For finite tem-
peratures an entropic term;Tr ln r must be added for the
gas phase, so that a double tangent atrg and rs can be
constructed with

rg→0, rs→rmin ,
du

dr U
rmin

5
u

rU
rmin

, for T→0.

~10!

The last equation is equivalent to the minimum conditi
dU/dr50.

Thus we conclude that atT50 the Stockmayer crystal in
the commonly studied rangem* &3 is either hexc or bco,
and not fcc nor bct as assumed in various studies before

B. Stockmayer model atTÌ0

In this section we present the predictions of the dens
functional theory~DFT!, which we applied to freezing of the
Stockmayer fluid in our previous work@15#, when the addi-

t

e

FIG. 4. Ground state phase diagram of the Stockmayer mo
The solid~dotted! line denotes first~second! order transitions. The
dashed line indicates the global minimum of the energy per part
over all densities. The unlabeled area to the left of this line i
two-phase region where an infinitely diluted gas coexists with
solid. The maximum of the pressurep5r2]U/]r in the depicted
parameter range occurs in the lower right corner wherep
.500e/s3. Using parameter values for argon this corresponds
about 20 GPa which is accessible in a laboratory.
3-5
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B. GROH AND S. DIETRICH PHYSICAL REVIEW E63 021203
tional crystal structures hexc and bco are taken into acco
This approach is based on a perturbation expansion aro
the hard sphere solid which is treated in the modifi
weighted-density approximation of Denton and Ashcr
@32#. The long-ranged isotropic and dipolar interactions
added in such a way that a successful theory of the Lenn
Jones fluid@33# is reproduced in the nonpolar limit. Th
detailed definition of the density functional is given in Re
@15# and therefore is not repeated here.

In order to treat the hexc phase with more than one b
particle some of the expressions given in Ref.@15# must be
generalized; e.g., the expression for the long-range contr
tion to the excess free energy turns into

DFexc
(LR)

V
52

8p

27
r2m2a1

2S 126(
kÞ0

uS~k!u2P2

3~cosuk!e
2k2/2g

j 1~ks!

ks D ~11!

with S(k)5M 21(t exp(2ik•t) and the other quantities a
defined in Ref.@15#. Besides the peak widthg and the ori-
entational order parameters, the axis ratios now appea
additional variables in the minimization.

Figure 5 shows the variation of the bco axis ratios
function of the dipole moment at fixed temperature and d
sity. For low m* the particles in the crystal are orientatio
ally disordered and both axis ratios are equal to 1/A2 corre-
sponding to an fcc lattice. When ferroelectric order sets
both axis ratios eventually decrease but exhibit a pecu
minimum and maximum in an intermediate range of valu
for m* . The contraction along the polarization directionc
axis! is in accordance with the ground state result. On
other hand, in contrast to the DFT results, both atT50 and
in the simulations the value ofb/a is larger than 1/A2 and
increases withm* ~compare Fig. 3!. A quantitative compari-
son with the simulation results form* 52.5 is not possible
because such high dipole moments could not be reache

FIG. 5. Axis ratios of the bco structure of a Stockmayer solid
r* 51.24 andT* 50.7 calculated from density-functional theor
Ferroelectric order sets in form* *0.67. The detailed behavior nea
this point could not be clarified due to numerical problems.
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the theory.@For large values ofm* the crystalline density
peaks become very narrow which leads to convergence p
lems, for example, in Eq.~11!.# In DFT usually both axis
ratios decrease with increasing dipole moment, decrea
temperature, or decreasing density.

For m* 52 hexc turns out to be the stable crystal structu
at all temperatures. In Fig. 6 we show the calculated fer
electric liquid–ferroelectric solid and gas–ferroelectric so
transition densities. For comparison our previous data
suming an fcc structure are displayed too. The shift due
the new crystal structure is relatively small and has no
pact on the occurrence of the ferroelectric liquid phase
such. The axis ratioc/a always lies below the ideal hcp
valueA8/351.633; it varies between 1.58 and 1.62 along t
parts of the coexistence lines shown in Fig. 6. Surprisingl
decreases with increasing density while the opposite tren
observed in the ground state. For the lower dipole mom
m* 51 the free energy differences between hexc, bco,
fcc are smaller than the numerical accuracy so that with
present tools it is not possible to decide which phase is
stable one. In any case, however, the loci of the phase bo
aries remain practically the same as calculated in Ref.@15#.
Thus we conclude that our DFT prediction of the occurren
of a stable ferroelectric liquid phase within a certain para
eter range is not altered by taking into account more po
bilities for the crystal structure and thus is in agreement w
the findings of the simulations.

C. Dipolar soft spheres atTÄ0

In this case fcc is more stable than hcp form* 50, or,
equivalently, form* Þ0 andr* →`. For large exponentsn
with decreasing density qualitatively the same sequence
transitions fcc–bco–bct occurs as discussed for the Sto
mayer system. But as shown by the phase diagram in Fi
within the bco range hexc is stable in an intermediate ran
Also in contrast to the Stockmayer model the vapor ph
can coexist only with the bct solid.

t FIG. 6. Phase diagram of the Stockmayer fluid as calcula
from density-functional theory form* 52. The ferroelectric solid
has hexc structure. The dotted line indicates the gas–ferroele
liquid–ferroelectric solid triple temperature. The dashed lines
the corresponding phase boundaries if an fcc solid is assumed.
unlabeled areas are two-phase regions.
3-6
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CRYSTAL STRUCTURES AND FREEZING OF DIPOLAR FLUIDS PHYSICAL REVIEW E63 021203
For n→` one recovers the limit of dipolar hard sphere
Here the lowest energy state is the ‘‘ideal’’ bct withc/a
5A2/3 atr* 54/3 @19# which coexists with an infinitely di-
luted state atr* 50. For higher densities close packed b
structures with

FIG. 7. Ground state phase diagram of the dipolar soft sph
model form* 51. The meaning of the line styles is the same as
Fig. 4. The abbreviations for the various crystal structures are
plained in the main text. The unlabeled areas are two-phase reg
The plots in the middle and at the bottom are magnifications of
regions aroundn512 and near the hard sphere limitn5`, respec-
tively. The phase diagram for other dipole momentsm* can be
inferred from the one given here by rescaling the reduced den
according tor* /m* 6/(n23). In the limit r* →` the upper bco phase
turns into fcc continuously.
02120
.

c

a
5S 3

8
r* 22r*A 9

64
r* 22

1

4D 1/2

,
b

a
5

2

r*
S c

aD 2

~12!

occur in which each particle has ten nearest neighbor
distances. At r* 51.383 a two-phase bco–hexc regio
starts that extends up to the maximum possible densityr*
5A2 where the ideal hcp lattice withc/a5A8/3 is stable.
For n→` the values of the axis ratios along the vario
phase boundaries in Fig. 7 converge towards the aforem
tioned hard sphere values.

A quite different behavior occurs for small exponentsn.
Here the isotropic repulsion cannot be overcome by the
polar attraction in a three-dimensional structure so that
energy is lowest atr50 which means that the solid phas
trig remains stable down to arbitrarily low densities witho
encountering a gas-solid phase separation.

A semi-quantitative understanding of this effect can
obtained by considering arrangements of parallel chains
which all crystal structures degenerate forr→0. The intrac-
hain energy per particle of a soft sphere chain is@19#

Uch522z~3!
m2

a3
14eS s

a D n

z~n!, ~13!

wherez(n)5(k51
` k2n is the Riemann zeta function anda

the particle distance. The equilibrium distance follows
minimization:

aeq

s
5S 2nz~n!

3z~3!m* 2D 1/(n23)

. ~14!

The purely dipolar interaction energy between two para
chains with distancer and longitudinal offsetz was calcu-
lated by Tao and Sun@19#:

Uch-ch
dip 5

16p2m2

a3 (
k51

`

K0S 2pkr

a D cosS 2pkz

a D
.

8p2m2

a3
Aa

r
e22pr /acosS 2pkz

a D , ~15!

whereKn denotes modified Bessel functions. Using simi
methods one finds for the isotropic contribution of a sing
power-law repulsion

Uch-ch
iso 5

4esn

a

Ap

G~n/2!
F GS n21

2 D
r n21

14(
k51

` S p

ra D (n21)/2

K (12n)/2S 2pkr

a D cosS 2pkz

a D G .

~16!
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B. GROH AND S. DIETRICH PHYSICAL REVIEW E63 021203
All but the first term decay exponentially forr→`. The total
chain-chain interactionUch-ch5Uch-ch

dip 1Uch-ch
iso , evaluated at

a5aeq and z5a/2 behaves qualitatively different for larg
and small exponentsn, as shown in Fig. 8. For largen it
exhibits a minimum withUch-ch,0 at intermediater fol-
lowed by a maximum and eventually an algebraic decay
r→`, whereas for smalln it is repulsive and monotonousl
decreasing for all distancesr. The minimum reaches zero a
n511.93 and disappears atn511.89. Thus the most fre
quently used value 12 for the exponent, mainly chosen
historical reasons, just marks the crossover between at
tive and repulsive soft dipolar chains which is also reflec
in the phase diagram. Nearn512 a low density fco phase
appears. In this phase forr→0 the particles form paralle
sheets, due to the small attraction between chains~see Fig.
8!. For slightly smaller values ofn the ground state become
trigonal with opening angleg→2p/3 for r→0, i.e., a hex-
agonal lattice of chains with relative longitudinal shifts6a/3
between nearest neighbors. Using the equations above
can verify that this limiting structure is more favorable th
a hexagonal arrangement with shifts 0 anda/2 which can be
obtained from a bco lattice withb/a5A3. In the same region
the bct phase disappears so that the transition sequence
increasing density becomes trig–bco–hexc–bco–fcc.

In both models the hexab phase turns out to be metast
for all parameters. All solid lines are first order transition
Except for the transitions bco-hexc nearn5` and fco-bct
nearn512 the density gaps are always very small. Dash
lines denote the continuous bco–bct and fco–bct transitio

IV. DISCUSSION

Even atT50 the investigated model systems show a r
phase behavior with a variety of solid-solid phase transiti
as function of dipole moment, density, and softness of
repulsion~see Figs. 4 and 7!. Concerning the experimenta
relevance of these phenomena molecular dipolar fluids
natural first candidates. However, for them quantitative co
parison is impeded by the fact that typically such partic

FIG. 8. Interaction potential between parallel chains of dipo
soft spheres, with a longitudinal shift of half the intrachain parti
distancea, for different values of the exponentn as a function of the
chain separationr. The plot is form* 51; corresponding curves fo
other dipole moments can be obtained by rescaling the dista
with m* 22/(n23) and the energy withm* 2n/(n23).
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exhibit additional short-ranged steric anisotropies which
come important at freezing densities@34#. Such a sensitive
dependence of the phase behavior on the details of the re
sive part of the interaction potential is supported by our fin
ings concerning the decay exponentn ~see Fig. 7!. The clos-
est effective realization of our models are colloid
suspensions of monodisperse spherical particles. The di
moment can either be a permanent magnetic moment a
ferrofluids@35# or an induced electric or magnetic moment
in electrorheological~ER! or magnetorheological fluids@36#.
At present it is still difficult to prepare stable ferrofluids
sufficiently high densities. However, recently the occurren
of gas–liquid–solid phase transitions in nearly monodispe
solutions of maghemiteg-Fe2O3 nanoparticles in water ha
been reported@37#. In this ionic ferrofluid the effective iso-
tropic interaction between the particles can be tuned
changing the screened Coulomb interaction via adding s
This kind of intervention into the interaction potential is ve
interesting since our analysis demonstrates that, as m
tioned above, the occurrence of different solid phases
pends sensitively on the details of the isotropic repulsion

The electrostatic energy of an arrangement of polariza
ER spheres with radiusa and dielectric constanteP in a
solvent of dielectric constanteF and an external fieldE is
@19#

UER52
aeFa3E2

2~112aa3Udip* !
~17!

with a5(eP2eF)/(eF12eP) andUdip* 5Udip /m2 the corre-
sponding reduced energy for permanent dipole momentsm.
For smalla (uau,1/2 by definition,a.0.3 has been esti
mated for a silicon oil ER fluid@38#, while a*21/2 for
water based fluids! Eq. ~17! can be expanded and the stru
ture dependent terms take on the same form as for perma
dipoles with an effective momentmeff

2 5a2eFa6E2 so that
the calculated phase diagrams apply without changes. M
over with typical values @22# E51 kV/mm and a
50.5 mm the dipolar energy at contactmeff

2 /(2a)3 is larger
than the thermal energykBT at room temperature by thre
orders of magnitude, justifying the use of our ground st
analysis. Concerning the effective isotropic interactions, d
persion forces as modeled by the LJ potential are presen
ER fluids@39# but usually negligibly small@40#. Steric repul-
sion at small distances is achieved by polymer coating. T
length and density of polymers determine the softness of
repulsion although it will be difficult to reproduce a powe
law dependence as considered theoretically above. T
chemical tailoring of the particle surface represents an op
to produce softly repulsive potentials which differ from th
hard sphere behavior usually assumed in ER models.
expect that our calculated phase diagrams at least qua
tively reflect the behavior of such ER fluids. While the sub
issue of the relative stability of the fcc and hcp phases
the corresponding bco–hexc transitions are probably mas
by neglected effects such as higher multipoles, many-part
interactions, and polydispersity, the phase sequence
bco–bct upon increasing field strength should be insensi
to these details.
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CRYSTAL STRUCTURES AND FREEZING OF DIPOLAR FLUIDS PHYSICAL REVIEW E63 021203
At small field strengths or if the colloidal particles a
covered by nonmagnetic or hardly polarizable spher
shells the dipolar energy at contact becomes comparab
kBT. In Sec. III B a previously developed density-function
theory has been applied to calculate the phase diagram
cluding the temperature as a relevant thermodynamic v
able. The overall effect of considering crystal structures d
ferent from fcc on the position of the phase boundaries
rather small. The occurrence of a stable ferroelectric liq
phase within a certain parameter range is confirmed an
agreement with corresponding conclusions based on sim
tion data. Nonetheless it is conceivable that some trend
the behavior of the axis ratios, such as the density dep
dence ofc/a in the hexc phase and the value ofb/a in the
bco phase, are not correctly described by DFT, which c
tains a number of uncontrolled approximations. However
present no better theory for the quite demanding problem
freezing of dipolar fluids is available.

APPENDIX THE DIPOLAR LATTICE SUM

The dipolar sum is only conditionally convergent, whic
means that its value depends on the order of summation
equivalently, on the sample shape. To clarify this often ov
looked difficulty, here we explicitly perform the thermody
namic limit starting from finite lattices and letting the samp
size diverge for fixed shape. We consider rotational el
soids with axis lengthskL along thez direction andL along
the x andy directions.

1. Reduction to a single lattice sum

The dipolar energy per particle is

Udip
L 5

1

2N (
R

(
R8ÞR

wdip~R2R8!

5
1

2 (
R12Þ0

hS R12

L Dwdip~R12!, ~A1!

where the superscriptL refers to a finite system and the la
tice vectorsR andR8 run over theN sites inside the sample
In the second form one summation has been carried ou
thatR12 runs over a sample of doubled size, and the funct
h counts the number of occurrences of a given interpart
vectorR12 divided by the number of particlesN. If for large
systems the discrete array of sites is approximated by a
form distribution of the same density, the functionh is given
by the ratio of the intersection volume of two ellipsoid
shifted byR12 relative to each other and the volume of o
ellipsoid. The explicit result derived in Ref.@11# is

hS u,
R12

L D511h1~u!
R12

L
1h3~u!S R12

L D 3

~A2!

with

h1~u!52
3

2 S sin2 u1
1

k2
cos2 u D 1/2

~A3!
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h3~u!5
1

2 S sin2 u1
1

k2
cos2 u D 3/2

, ~A4!

whereu is the angle betweenR12 and thez axis. For rapidly
decaying potentials in the thermodynamic limitL→` h can
be replaced by 1 because the differenceh21 becomes ap-
preciable only for large values ofR12 comparable withL
which, however, have a small weight in Eq.~A1! due to the
vanishing ofw(R12). But it is unclear whether this line o
argument also holds for the slowly decaying dipolar pote
tial. In order to check this we choose a cutoff radiusRc
beyond which one may approximate the summation in
~A1! by an integral. In this limit the terms withR12.Rc
become

2prE
21

1

d cosuE
Rc

2Lg(u)

drr 2
m2

r 3
P2~cosu!hS u,

r

L D
52prm2E

21

1

d cosuP2~cosu!F ln g~u!1h1~u!g~u!

1
1

3
h3~u!g~u!3G1OS 1

L D . ~A5!

Here r is the density of dipoles,P2(x)5(3x221)/2 is the
second Legendre polynomial, and the functiong(u)
5(sin2 u1cos2 u/k2)21/2 parametrizes the surface of the ellip
soid @11#. Due to the specific forms of the functionshi andg
the last two terms vanish so that indeed one obtains the s
result if h51 is set from the beginning. The same is obv
ously true for the contributions fromR12,Rc for L→`.
These considerations justify that the average energy per
ticle may be replaced by the energy of the central partic
We emphasize that this argument hinges on the ellipso
shape of the sample. For example, by explicit calculatio
one can show that the replacement isnot correct for a paral-
lelepiped with general aspect ratio.

2. Shape dependence in the Ewald method

The Ewald form of the dipolar lattice sum is often us
without any discussion of the shape dependence of the o
nal sum@41,42,34#. In the following we show that it actually
corresponds to a specific choice of the sample shape an
derive the corrections that must be applied for other sha
To this end the dipolar lattice is constructed by superposit
of two slightly shifted opposite point charge lattices. Hen
we first recapitulate the derivation of the correspond
Ewald sum for the electrostatic potentialf(r ) of a finite
Bravais lattice of positive unit point charges plus an oppos
uniform background charge. The Ewald method proceeds
rearranging the charge densityr(r ) into two contributions,
employing a suitable addition of zero: firstr1(r ) correspond-
ing to a lattice of positive Gaussian charge distributions p
the negative background, secondr2(r ) corresponding to a
lattice of negative Gaussians plus the positive point charg
3-9



d

ni
m

d
-

as

.
-
ica

e

les
ly

,
ub-
po-
the
the

he

ng
is

ms

fac-

lar
ole

apes
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r~r !5r1~r !1r2~r !5(
R

@r1
(0)~r2R!1r2

(0)~r2R!#,

~A6!

where

r1
(0)~r !5S n2

p D 3/2

e2n2r 2
2

1

Vc
Qc~r ! ~A7!

and

r2
(0)~r !5d~r !2S n2

p D 3/2

e2n2r 2
~A8!

with Qc(r )51 if r is in the unit cell around the origin an
Qc(r )50 otherwise. The Fourier transform

r̃1~k!5E
R3

d3re2 ik•rr1~r ! ~A9!

of the first contribution is

r̃1
L~k!5 r̃1

(0)~k!(
R

8 e2 ik•R. ~A10!

The L dependence arises via the summation over the fi
number of lattice vectors, indicated by the prime on the su
mation sign. The sum in Eq.~A10! is strongly peaked aroun
the reciprocal lattice vectorsG for large systems and ap
proaches (2p)3/Vc(Gd(k2G) in the thermodynamic limit.
The corresponding electrostatic potential is

f1
L~r !5

4p

~2p!3ER3
d3k eik•r r̃1

L~k!/k2. ~A11!

If the unit cell is chosen as the volume spanned by the b
vectors and as centered aroundr50 one findsQ̃c(G)50 for
all GÞ0 and r̃1

(0)(k50)50 due to local charge neutrality
For the second contributionr2(r ) the potential is easily ob
tained by integration of the Poisson equation in spher
coordinates yielding

f2
L5(

R
8

erfc~nur2Ru!
ur2Ru

. ~A12!

For L→` the total potential is@31#

f~r !5
4p

Vc
(

GÞ0

1

G2
eiG•rexpS 2

G2

4n2D 1(
R

erfc~nur2Ru!
ur2Ru

1C~n!, ~A13!

whereC(n)52p/(n2Vc) is a constant stemming from th
small k contributions in Eq.~A11!. In this form both sums
are rapidly converging andf(r ) is independent ofn.
02120
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The potential of a corresponding arrangement of dipo
is now obtained from the superposition of two slight
shifted point charge lattices with opposite signs:

fdip
L ~r !5 lim

d→0

m

d
@f̂L~r2d/2!2f̂L~r1d/2!1funi

L ~r2d/2!

2funi
L ~r1d/2!#, d5dm̂. ~A14!

The potentialsfuni
L of the uniform background charges

which do not cancel each other in this limit, have been s
tracted. Furthermore the hats indicate that the Coulomb
tential 1/r must also be subtracted, because the field of
dipole at the origin must not be included. The energy of
central dipole follows as

Udip
L 5

m

2

]

]z
fdip

L ur5052
m2

2

]2

]z2
@f̂L~r !1funi

L ~r !# r50 ,

~A15!

where the limitd→0 generates the second derivative. T
first term reproduces Eq.~7! for L→` @see Eq.~A13!#. The
generalization to lattices with basis follows from summi
the contributions from each sublattice. The second term
calculated using

funi
L

„r5~0,0,r !…

5rE d3r 8
1

ur2r 8u

52prE
21

1

d cosuE
0

2Lg(u)

dr8r 82~r 21r 82

22rr 8 cosu!21/2. ~A16!

By performing the inner integration and expanding in ter
of r one finds

]2

]z2
funi

L ~r !ur50524prS 1

3
1E

21

1

d cosuP2~cosu!ln g~u! D
524prD~k!. ~A17!

The expression in large parentheses is the depolarization
tor D(k) of an ellipsoid with aspect ratiok @11#. All other
terms are independent ofk for L→`. Thus we have derived
an explicit result for the shape dependence of the dipo
energy which is the same as for the homogeneous dip
density studied in Ref.@11#. SinceD(k→`)50 Eq. ~7! is
correct for a needle-shaped sample. In other sample sh
the dipolar energy can be lowered by domain formation.
3-10
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